How to Build the Fastest Inference Chatbot with LLaMA 3 and Groq

In this blog post, we'll leverage the power of the llama 3 open-source model to build a fast inference chatbot capable of handling multiple PDF documents. We will use Groq, an LPU (Language Processing Unit) inference engine that enables the model to run incredibly fast. We'll use Nomic Embed Text for embeddings, which provides high-performance embeddings with a large token context window. We'll store these embeddings in Chroma DB, a vector store, to achieve exceptional performance. Additionally, we'll explore how to replicate this setup locally.


Components and Tools

- llama 3: Open-source language model

- Groq: LPU inference engine

- Nomic Embed Text: High-performance embedding model

- Chroma DB: Vector store

- Python Libraries: PyPDF2, langchain, Chroma, Groq, and others


Steps to Build the Chatbot


1. Setup Environment

   - Install necessary libraries: PyPDF2, langchain, Chroma, Groq, etc.

   - Create and activate a virtual environment.


2. Initialize Variables and Load Models

   - Load the environment variables and initialize the Groq API key.

   - Set up the conversational chain with memory and initialize the embedding model and vector store.


3. Upload and Process PDFs

   - Create a function to handle PDF uploads.

   - Split the text into chunks for embedding.

   - Store the chunks and their metadata in Chroma DB.


4. Chat Functionality

   - Implement the chat function to handle user queries.

   - Retrieve relevant document sections from the vector store based on the user's question.

   - Pass the query and retrieved sections to the llama 3 model via Groq.

   - Return the model's answer along with references to the relevant document sections.


5. Local Setup (Optional)

   - Adapt the code to run the setup locally using langchain and llama 3 without Groq.



 Installation

chainlit

langchain

langchain_community

PyPDF2

chromadb

groq

langchain-groq

ollama

python-dotenv


Code Implementation

import PyPDF2

from langchain_community.embeddings import OllamaEmbeddings

from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain_community.vectorstores import Chroma

from langchain.chains import ConversationalRetrievalChain

from langchain.memory import ChatMessageHistory, ConversationBufferMemory

import chainlit as cl

from langchain_groq import ChatGroq

from dotenv import load_dotenv

import os


# Loading environment variables from .env file

load_dotenv() 


# Function to initialize conversation chain with GROQ language model

groq_api_key = os.environ['GROQ_API_KEY']


# Initializing GROQ chat with provided API key, model name, and settings

llm_groq = ChatGroq(

            groq_api_key=groq_api_key, model_name="llama3-70b-8192",

                         temperature=0.2)



@cl.on_chat_start

async def on_chat_start():

    files = None #Initialize variable to store uploaded files


    # Wait for the user to upload files

    while files is None:

        files = await cl.AskFileMessage(

            content="Please upload one or more pdf files to begin!",

            accept=["application/pdf"],

            max_size_mb=100,# Optionally limit the file size,

            max_files=10,

            timeout=180, # Set a timeout for user response,

        ).send()


    # Process each uploaded file

    texts = []

    metadatas = []

    for file in files:

        print(file) # Print the file object for debugging


        # Read the PDF file

        pdf = PyPDF2.PdfReader(file.path)

        pdf_text = ""

        for page in pdf.pages:

            pdf_text += page.extract_text()

            

        # Split the text into chunks

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50)

        file_texts = text_splitter.split_text(pdf_text)

        texts.extend(file_texts)


        # Create a metadata for each chunk

        file_metadatas = [{"source": f"{i}-{file.name}"} for i in range(len(file_texts))]

        metadatas.extend(file_metadatas)


    # Create a Chroma vector store

    embeddings = OllamaEmbeddings(model="nomic-embed-text")

    docsearch = await cl.make_async(Chroma.from_texts)(

        texts, embeddings, metadatas=metadatas

    )

    

    # Initialize message history for conversation

    message_history = ChatMessageHistory()

    

    # Memory for conversational context

    memory = ConversationBufferMemory(

        memory_key="chat_history",

        output_key="answer",

        chat_memory=message_history,

        return_messages=True,

    )


    # Create a chain that uses the Chroma vector store

    chain = ConversationalRetrievalChain.from_llm(

        llm=llm_groq,

        chain_type="stuff",

        retriever=docsearch.as_retriever(),

        memory=memory,

        return_source_documents=True,

    )

    

    # Sending an image with the number of files

    elements = [

    cl.Image(name="image", display="inline", path="pic.jpg")

    ]

    # Inform the user that processing has ended.You can now chat.

    msg = cl.Message(content=f"Processing {len(files)} files done. You can now ask questions!",elements=elements)

    await msg.send()


    #store the chain in user session

    cl.user_session.set("chain", chain)



@cl.on_message

async def main(message: cl.Message):

     # Retrieve the chain from user session

    chain = cl.user_session.get("chain") 

    #call backs happens asynchronously/parallel 

    cb = cl.AsyncLangchainCallbackHandler()

    

    # call the chain with user's message content

    res = await chain.ainvoke(message.content, callbacks=[cb])

    answer = res["answer"]

    source_documents = res["source_documents"] 


    text_elements = [] # Initialize list to store text elements

    

    # Process source documents if available

    if source_documents:

        for source_idx, source_doc in enumerate(source_documents):

            source_name = f"source_{source_idx}"

            # Create the text element referenced in the message

            text_elements.append(

                cl.Text(content=source_doc.page_content, name=source_name)

            )

        source_names = [text_el.name for text_el in text_elements]

        

         # Add source references to the answer

        if source_names:

            answer += f"\nSources: {', '.join(source_names)}"

        else:

            answer += "\nNo sources found"

    #return results

    await cl.Message(content=answer, elements=text_elements).send()




Output:



Conclusion


This setup demonstrates how to build a fast inference chatbot using llama 3 and Groq. By leveraging high-performance embedding models and a vector store, the chatbot can efficiently process and respond to queries based on multiple PDF documents. For those interested in running this locally, adapting the code to use langchain and llama 3 without Groq is straightforward.Happy coding! 

Post a Comment

Previous Post Next Post